Let’s jumpstart the new industrial revolution

There is as much headroom in physics and engineering for energy as there is in computation; what is stopping us is not lack of technology but lack of will and good sense. — J. Storrs Hall

There have been three industrial revolutions. The first two spanned from the late 1700s to the early 1900s and essentially created the technological world we know today. Energy, transportation, housing, and most “core” infrastructure is pretty similar now as it was at the end of this period — especially if you extend it into the 1970s. The third revolution, the “Digital Revolution”, started around this time and as anyone reading this knows has made computing and communication ubiquitous.

There were bad things that came from these revolutions: pollution, environmental destruction, war, child labor, etc. But the good overwhelmed the bad, leading to GDP per capita (”resources per person”) doing this, which we can use as a proxy for progress in a host of other areas like longer/healthier lifespan, lower child mortality, less violence, lower poverty, and more.

Wikipedia describes the potential Fourth Industrial Revolution as “…the joining of technologies like artificial intelligence, gene editing, to advanced robotics that blur the lines between the physical, digital, and biological worlds.”

These things are great, but we need more. Much more.

As just one example, it’s become abundantly clear over the past few weeks the importance of energy independence. But why don’t we already have it?

The cost of PV cells has collapsed over the past few decades. We also know it’s possible to build nuclear reactors far safer and more productive than any in the past. There should be solar panels on every home, geothermal wells in every town, and multiple nuclear fission (possibly fusion?) reactors in every state. A setup like this would lead to redundant energy at every scale, not reliant on geopolitics or over-centralization.

We should want to consume more energy, not less. (And unlike the second industrial revolution, it can be clean energy with minimal externalities.)

What else could a new industrial revolution bring? Just imagine what you’d see in a typical sci-fi movie:

Space parks/hotels/colonies, limb regeneration, flying cars, supersonic jets, same-day shipping to anywhere on Earth, self-replicating nanobots, new animal species, plants everywhere, infrastructure made out of GM trees, universal vaccines for all viruses, mobile robotic surgeons that can save lives on-location, convoys of self-driving cars, batteries with 50x current power, etc. etc.

To build these things — or even to see if they’re possible — a lot needs to change. Here’s just a few I’ve been thinking about:

  • Create a pro-progress culture. Pro-progress means anti-stasis. We’ve come a long way, and things are pretty good now. But they could be better. Far more people should be optimistic about the future and what they can do now to make it better.
  • Find more ways to celebrate and fund scientists and inventors like we do founders, celebrities, executives and sports stars. More crazy ideas should be funded, and even if they don’t succeed, the culture should be accepting of it.
  • Take more risks as a society. Incremental progress is great but even over long periods it can lead to a local optimum. To get to a higher peak, we need more exploration, experimentation, and invention. With this comes risk. We should do whatever we can to be conscious of and mitigate these risks, but in the end if the precautionary principle is applied to everything, we’ll be stuck in stasis until a global catastrophe forces our hand.
  • Allocate more resources to efforts that have high expected return to life on Earth. Nuclear fusion, for example, may have only a small probability of succeeding in the next 10 years. But if it does, it could bring enormous benefits to the world (to humans, animals, plants, you name it). The probability-weighted return to life on Earth is thus very large, and yet minimal resources are being devoted to it. The industrialization of space is another example. Concerned about depleting Earth’s resources or peak “X”? You wouldn’t be if we could mine asteroids and move potentially harmful processes off-planet.

If you agree with any of the above or are interested in similar ideas, here’s a few good resources I’ve enjoyed recently:

The Scale of Large Projects

$100 million +

  • Midsize commercial airplane — $120m ^
  • Big budget video game — $150m ^
  • F-22 Raptor jet — $157m ^
  • iPhone R&D (2007) — $185m ^
  • Titanic (1912) — $190m ^
  • Big budget movie — $250m ^
  • SpaceX Falcon 9 v1 R&D — $350m ^
  • Empire State Building (1931) — $400m ^
  • Modern cruise ship — $750m ^
  • Hoover Dam (1936) — $863m ^

$1 billion +

  • Modern sports stadium — $1.3b ^
  • Modern skyscraper — $1.5b ^
  • Space Shuttle launch — $1.5b ^
  • Erie Canal (1825) — $4b ^
  • Human Genome Project (2003) — $5b ^
  • Panama Canal (1912) — $9b ^
  • Hubble Space Telescope (1990) — $9b ^

$10 billion +

  • Global Positioning System (1989) — $10b ^
  • Large Hadron Collider (2009) — $13b ^
  • Great Pyramid of Giza (~2500 BCE) — $20b ^
  • Three Gorges Dam (2009) — $25b ^
  • Transcontinental railroad (1863) — $30b ^
  • Manhattan Project (1945) — $30b ^
  • F-22 Raptor development (1997) — $42b ^
  • Great Wall of China (220 BCE) — $50b ^
  • SR-71 Blackbird development (1964) — $90b ^

$100 billion +

  • International Space Station — $150b ^
  • Apollo program (1969) — $200b ^
  • U.S. Interstate Highway System (~1980) — $500b ^

Many of these numbers are rough estimates. Figures adjusted for inflation after 1900 that weren’t already. Any figure before 1900 was adjusted via per capita GDP to more accurately reflect the scale of the undertaking.

If it were possible, the best metric to compare the scale of projects would be something like “Man-years + Value of Raw Materials (possibly in ounces of gold)“. This is especially true for projects like the Great Pyramid, the Suez Canal, the Great Wall of China, or the Manhattan Project which used mostly unpaid or low-paid labor.

Related: The Tallest Skyscrapers in the World, Pyramids vs. Skyscrapers